Stat 201: Introduction to Statistics

Standard 7: Numerical Summaries – Percentiles Chapter Two

Summaries

Percentiles

- How many of you have heard this term before?
 - Testing
 - Medical terminology
 - Etc
- Percentiles the pth percentile is a value such that p percent of the observations fall below or at that value.

Percentiles: Important Ones

- We call these quartiles because they split the data into quarters
 - Q1: the observation at the 25th percentile
 - Q2: the observation at the 50th percentile
 - This is the same as the median
 - Q3: the observation at the 75th percentile

Percentiles: Important Ones

 IQR=Q3-Q1: another measure of spread used in place of standard deviation w/ skewed data
 – IQR gives the range of the middle 50% of the data

Five Number Summary: Important Percentiles

- We call these quartiles because they split the data into quarters
 - $-Q_L$: the observation at the 25th percentile
 - $-Q_M$: the observation at the 50th percentile
 - This is the same as the median
 - $-Q_U$: the observation at the 75th percentile
- Min: the smallest observation the 0th percentile
- Max: the largest observation the 100th percentile

Five Number Summary: Interquartile Range

- $IQR = Q_U Q_L$: another measure of spread used in place of standard deviation w/ skewed data
 - IQR gives the range of the middle 50% of the data

Five Number Summary: Finding Outliers with Quartiles

- Lower Fence= $Q_L (1.5)^* IQR$ = $1.5 - (1.5)^* 5 = -6$
- Upper Fence= Q_U + (1.5)*IQR = 6.5 + (1.5)*5 = 14
- We consider any observation with a value outside of the interval (Lower Fence, Upper Fence) an outlier

Walkthrough

Percentiles

- How many of you have heard this term before?
 - Testing
 - Medical terminology
 - Etc
- Percentiles the pth percentile is a value such that p percent of the observations fall below or at that value.

Five Number Summary: Where to Find Them

• The five number summary, of n items, that we use to draw a box plot includes the following:

Name	Position in Ascending Order
Minimum	1 st
Q_1	.25*(n+1) th
Q_M (This is the median)	.5*(n+1) th
Q_3	.75*(n+1) th
Maximum	n th

Example: The Lower (1st) Quartile

Is the position value a whole number	The Quartile
Yes	The number in that position
No	The weighted average of the numbers in the above and below positions

- $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$
- Position of $Q_1 = .25^*(n+1) = .25^*(9+1)$

= 2.5th position (the remainder is .5)

• $Q_1 = (.5)^*$ (# In the 3rd pos.) +(1-.5)*(# in the 2nd pos.) = .5*2 + .5*1 = 1 + .5 = 1.5

Example: The Middle (2nd) Quartile

Is the position value a whole number	The Quartile
Yes	The number in that position
No	The average of the numbers in the above and below positions

- $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$
- Position of the Median = .5*(n+1) = .5*(9+1)
 = 5th position
- $Q_M = 4$

Example: The Upper (3rd) Quartile

Is the position value a whole number	The Quartile
Yes	The number in that position
No	The average of the numbers in the above and below positions

- $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$
- Position of $Q_3 = .75^*(n+1) = .75^*(9+1)$

= 7.5th position (.5 is the remainder)

• $Q_3 = (.5)^*$ (# In the 8th pos.) +(1-.5)*(# in the 7th pos.) = .5*7 + .5*6 = 1 + 1.5 = 6.5

Example: Interquartile Range

 $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$

- $Q_1 = (1+2)/2 = 1.5$
- $Q_M = 4$
- $Q_3 = (6+7)/2 = 6.5$
- IQR = $Q_3 Q_1 = 6.5 1.5 = 5$
 - 50% of the data lies between 1.5 and 6.5
 - 50% of the data lies on a range of size 5

Example: Using Quartiles to find Outliers

 $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$

- $Q_1 = (1+2)/2 = 1.5$
- $Q_3 = (6+7)/2 = 6.5$
- IQR = $Q_3 Q_1$ = 6.5 1.5 = 5
- Lower Fence= $Q_1 (1.5)^* IQR$ = 1.5 - (1.5)*5 = -6
- Upper Fence= Q_3 + (1.5)*IQR = 6.5 + (1.5)*5 = 14
- In this case anything smaller than -6 or greater than 14 would be an outlier

Box Plots: The Graph of a Five Number Summary

- The box plot utilizes the five number summary
 - The box is created using quartiles
 - The whiskers are created using the fences
 - The points are the outlying points if there are any

Skewness in Boxplots

Quarterly Presidential Approval Ratings

Data: Graphical Summary

• <u>StatCrunch Command:</u>

Graph \rightarrow Boxplot \rightarrow Select the variable(s) \rightarrow Compute

Quarterly Presidential Approval Ratings

Party

Data: Graphical Summary

<u>StatCrunch Command</u>

Graph \rightarrow Bar Plot \rightarrow w/data \rightarrow Select the variable you'd like on the x-axis \rightarrow Group by the variable you would like the bars to be split by \rightarrow Compute