Stat 201: Introduction to Statistics

Standard 7: Numerical Summaries - Percentiles

Chapter Two

Summaries

Percentiles

- How many of you have heard this term before?
- Testing
- Medical terminology
- Etc
- Percentiles - the pth percentile is a value such that p percent of the observations fall below or at that value.

Percentiles: Important Ones

- We call these quartiles because they split the data into quarters
- Q1: the observation at the $25^{\text {th }}$ percentile
- Q2: the observation at the $50^{\text {th }}$ percentile
- This is the same as the median
- Q3: the observation at the $75^{\text {th }}$ percentile

Percentiles: Important Ones

- IQR=Q3-Q1: another measure of spread used in place of standard deviation w/ skewed data
- IQR gives the range of the middle 50% of the data

Five Number Summary: Important Percentiles

- We call these quartiles because they split the data into quarters
$-Q_{L}$: the observation at the $25^{\text {th }}$ percentile
$-Q_{M}$: the observation at the $50^{\text {th }}$ percentile
- This is the same as the median
$-Q_{U}$: the observation at the $75^{\text {th }}$ percentile
- Min: the smallest observation - the $0^{\text {th }}$ percentile
- Max: the largest observation - the $100^{\text {th }}$ percentile

Five Number Summary:

Interquartile Range

- $\operatorname{IQR}=Q_{U}-Q_{L}$: another measure of spread used in place of standard deviation $\mathrm{w} /$ skewed data
- IQR gives the range of the middle 50% of the data

Five Number Summary:

Finding Outliers with Quartiles

- Lower Fence= $Q_{L}-(1.5)^{*} \mathrm{IQR}$

$$
=1.5-(1.5) * 5=-6
$$

- Upper Fence $=Q_{U}+(1.5)^{*}$ IQR

$$
=6.5+(1.5) * 5=14
$$

- We consider any observation with a value outside of the interval (Lower Fence, Upper Fence) an outlier

Walkthrough

Percentiles

- How many of you have heard this term before?
- Testing
- Medical terminology
- Etc
- Percentiles - the pth percentile is a value such that p percent of the observations fall below or at that value.

Five Number Summary: Where to Find Them

- The five number summary, of n items, that we use to draw a box plot includes the following:

Name

Position in Ascending Order

Minimum
Q_{1}
$.25^{*}(n+1)^{\text {th }}$
Q_{M} (This is the median) $.5^{*}(\mathrm{n}+1)^{\text {th }}$
Q_{3}
Maximum
$\mathrm{n}^{\text {th }}$

Example: The Lower ($1^{\text {st) }}$) Quartile

Is the position value a whole number	The Quartile
Yes	The number in that position
No	The weighted average of the numbers in the above and below positions

- $X=\{0,1,2,3,4,5,6,7,8)$
- Position of $Q_{1}=.25^{*}(n+1)=.25^{*}(9+1)$

$$
=2.5^{\text {th }} \text { position (the remainder is } .5 \text {) }
$$

- $Q_{1}=(.5)^{*}\left(\#\right.$ In the $3^{\text {rd }}$ pos.) $+(1-.5)^{*}\left(\#\right.$ in the $2^{\text {nd }}$ pos.)

$$
=.5^{*} 2+.5 * 1=1+.5=1.5
$$

Example: The Middle (2 ${ }^{\text {nd }}$) Quartile

Is the position value a whole number	The Quartile
Yes	The number in that position
No	The average of the numbers in the above and below positions

- $X=\{0,1,2,3,4,5,6,7,8)$
- Position of the Median $=.5^{*}(n+1)=.5^{*}(9+1)$
$=5^{\text {th }}$ position
- $Q_{M}=4$

Example: The Upper ($3^{\text {rd }}$) Quartile

Is the position value a whole number	The Quartile
Yes	The number in that position
No	The average of the numbers in the above and below positions

- $X=\{0,1,2,3,4,5,6,7,8)$
- Position of $Q_{3}=.75^{*}(n+1)=.75^{*}(9+1)$ $=7.5^{\text {th }}$ position (.5 is the remainder)
- $Q_{3}=(.5)^{*}\left(\# \ln\right.$ the $8^{\text {th }}$ pos.) $+(1-.5)^{*}$ (\# in the $7^{\text {th }}$ pos.)

$$
=.5 * 7+.5 * 6=1+1.5=6.5
$$

Example: Interquartile Range

$X=\{0,1,2,3,4,5,6,7,8)$

- $Q_{1}=(1+2) / 2=1.5$
- $Q_{M}=4$
- $Q_{3}=(6+7) / 2=6.5$
- $\mathrm{IQR}=Q_{3}-Q_{1}=6.5-1.5=5$
- 50% of the data lies between 1.5 and 6.5
- 50% of the data lies on a range of size 5

Example: Using Quartiles to find Outliers

$X=\{0,1,2,3,4,5,6,7,8)$

- $Q_{1}=(1+2) / 2=1.5$
- $Q_{3}=(6+7) / 2=6.5$
- $\operatorname{IQR}=Q_{3}-Q_{1}=6.5-1.5=5$
- Lower Fence $=Q_{1}-(1.5)^{*} \operatorname{IQR}$

$$
=1.5-(1.5) * 5=-6
$$

- Upper Fence $=Q_{3}+(1.5)^{*}$ IQR

$$
=6.5+(1.5) * 5=14
$$

- In this case anything smaller than -6 or greater than 14 would be an outlier

Box Plots:

The Graph of a Five Number Summary

- The box plot utilizes the five number summary
- The box is created using quartiles
- The whiskers are created using the fences
- The points are the outlying points -if there are any

Skewness in Boxplots

Left Skewed w/ Boxplots

Bell Shaped w/ Boxplots

Right Skewed w/ Boxplots

Quarterly Presidential Approval Ratings

Data: Graphical Summary

- StatCrunch Command:

Graph \rightarrow Boxplot \rightarrow Select the variable(s) \rightarrow Compute

Quarterly Presidential Approval Ratings

Data: Graphical Summary

- StatCrunch Command

Graph \rightarrow Bar Plot $\rightarrow \mathrm{w} /$ data \rightarrow Select the variable you'd like on the x-axis \rightarrow Group by the variable you would like the bars to be split by \rightarrow Compute

